NR2B Expression in Rat DRG Is Differentially Regulated Following Peripheral Nerve Injuries That Lead to Transient or Sustained Stimuli-Evoked Hypersensitivity

نویسندگان

  • Monica Norcini
  • Alexandra Sideris
  • Samantha M. Adler
  • Lourdes A. M. Hernandez
  • Jin Zhang
  • Thomas J. J. Blanck
  • Esperanza Recio-Pinto
چکیده

Following injury, primary sensory neurons undergo changes that drive central sensitization and contribute to the maintenance of persistent hypersensitivity. NR2B expression in the dorsal root ganglia (DRG) has not been previously examined in neuropathic pain models. Here, we investigated if changes in NR2B expression within the DRG are associated with hypersensitivities that result from peripheral nerve injuries. This was done by comparing the NR2B expression in the DRG derived from two modalities of the spared nerve injury (SNI) model, since each variant produces different neuropathic pain phenotypes. Using the electronic von Frey to stimulate the spared and non-spared regions of the hindpaws, we demonstrated that sural-SNI animals develop sustained neuropathic pain in both regions while the tibial-SNI animals recover. NR2B expression was measured at Day 23 and Day 86 post-injury. At Day 23 and 86 post-injury, sural-SNI animals display strong hypersensitivity, whereas tibial-SNI animals display 50 and 100% recovery from post-injury-induced hypersensitivity, respectively. In tibial-SNI at Day 86, but not at Day 23 the perinuclear region of the neuronal somata displayed an increase in NR2B protein. This retention of NR2B protein within the perinuclear region, which will render them non-functional, correlates with the recovery observed in tibial-SNI. In sural-SNI at Day 86, DRG displayed an increase in NR2B mRNA which correlates with the development of sustained hypersensitivity in this model. The increase in NR2B mRNA was not associated with an increase in NR2B protein within the neuronal somata. The latter may result from a decrease in kinesin Kif17, since Kif17 mediates NR2B transport to the soma's plasma membrane. In both SNIs, microglia/macrophages showed a transient increase in NR2B protein detected at Day 23 but not at Day 86, which correlates with the initial post-injury induced hypersensitivity in both SNIs. In tibial-SNI at Day 86, but not at Day 23, satellite glia cells (SGCs) displayed an increase in NR2B protein. This study is the first to characterize of cell-specific changes in NR2B expression within the DRG following peripheral nerve injury. We discuss how the observed NR2B changes in DRG can contribute to the different neuropathic pain phenotypes displayed by each SNI variant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury

BACKGROUND Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus a...

متن کامل

Cyclooxygense-1 inhibition delays hypersensitivity to nerve injury

Despite the important role of both cyclooxygenase (COX) isoforms (i.e. COX-1 and COX-2) in maintenance of hypersensitivity following peripheral nerve injury, their role in the development of neuropathic pain is not clear. The present study was undertaken to determine the effect of COX inhibitors to address the potential role of COX isozymes in the development of neuropathic pain in rats after c...

متن کامل

Nerve growth factor (NGF) differentially regulates the chemosensitivity of adult rat cultured sensory neurons.

We have studied the effects of NGF on the chemosensitivity of adult rat DRG neurons over a 1-2 week period in vitro, using voltage-clamp and radioactive ion flux methods. A sustained proton evoked current was reversibly lost in NGF-free medium after 1 week. Proton-evoked efflux of radioactive 86Rb+ ions was also depressed in NGF deprived cultures, although depolarization with 40 mM potassium st...

متن کامل

Cyclooxygense-1 inhibition delays hypersensitivity to nerve injury

Despite the important role of both cyclooxygenase (COX) isoforms (i.e. COX-1 and COX-2) in maintenance of hypersensitivity following peripheral nerve injury, their role in the development of neuropathic pain is not clear. The present study was undertaken to determine the effect of COX inhibitors to address the potential role of COX isozymes in the development of neuropathic pain in rats after c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016